

    
      Navigation

      
        	
          index

        	
          next |

        	crypto_toolkit 0.1 documentation 
 
      

    


    
      
          
            
  
Welcome to crypto_toolkit’s documentation!


Contents:


	Crypto Guidelines
	Contents





	README
	crypto_toolkit





	Code Documentation








Indices and tables


	Index

	Module Index

	Search Page







          

      

      

    


    
         Copyright 2017, Adarsh Saraf.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	crypto_toolkit 0.1 documentation 
 
      

    


    
      
          
            
  
Crypto Guidelines


Contents


	Random Number Generation

	Password Storage

	Key Generation




Random Number Generation

/dev/random or /dev/urandom are considered very good sources for
random numbers. From the Linux man page:


The random number generator gathers environmental noise from device
drivers and other sources into an entropy pool. The generator also
keeps an estimate of the number of bits of noise in the entropy
pool. From this entropy pool, random numbers are created...


/dev/random is blocking until environmental noise is available.
/dev/urandom is non-blocking and can reuse the internal pool to
produce more pseudo-random bits when new ones are not available. For
futher info on these look at the
man-page [http://man7.org/linux/man-pages/man4/random.4.html].

/dev/urandom can be accessed through the python os module as
follows:

import os
random_number = os.urandom(16)





For further info look at
`os.urandom <https://docs.python.org/3/library/os.html>`__.

In this toolkit we have provided the following method for users to
easily get pseudorandom numbers:

get_random_number(size = 16):
    '''
    Get a random number.
    The size parameter specifies the number of bytes in the random number generated.
    The default size of 16 is acceptable for salts, etc.
    Returns the Base58 encoded random number.
    '''





Currently it’s a wrapper around os.urandom but can be updated in the
future to support better random number generators.




Password Storage

It is never advisable to store user passwords in plaintext in any
manner. Any user password must immediately be garbled to safeguard it’s
security. The current practices require that we store a hash of the
password generated. This can be done using either of PBKDF2,
bcrypt, or scrypt cryptographic tools. While PBKDF2 is
secure, it is vulnerable to ASICs/GPUs based attacks since it does not
use more memory but just repetitive computations. It is suggested that
passwords be hashed using scrypt which has larger memory
requirements. All these methods use a unique salt per password to
prevent against rainbow attacks, which involves the creation of
inverse hash tables. The use of the salt makes it difficult to
precompute inverse hashes since now the salt varies and therefore any
attacker will have to compute the hashes based on this salt, which is
effectively a brute-force attack and is made very difficult since
finding collisions for cryptographically secure hash funtions is
computationally difficult.

PBKDF2 can take any pseudorandom function like cryptographic hash,
ciphers or hash-based message authentication code to garble the given
password using the salt. For more details, see
`PBKDF2 <https://en.wikipedia.org/wiki/PBKDF2>`__.

In the given toolkit, we provide the following two methods:

generate_storage_hash_from_password(password, salt = None, length = 128, n = 2**14, r = 8, p = 1)
verify_storage_hash_from_password(storage_hash, password, salt, length = 128)





These can be used to provide the functionalities of generating and
verifying storage hashes for passwords. The user can supply the salt, or
a random salt is generated using get_random_number.




Key Generation









          

      

      

    


    
         Copyright 2017, Adarsh Saraf.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	crypto_toolkit 0.1 documentation 
 
      

    


    
      
          
            
  
README


crypto_toolkit

A set of cryptographic tools exposed in a simple user interface for most
common usages. We also provide a set of guidelines for common
cryptographic uses tying them to the methods provided in this toolkit.


Background

We create this simple toolkit in order to enable users exploit
cryptographic techniques for data security without actually having to
know about them. We provide simple APIs for common use scenarios using
the Python cryptography module.




Requirements

You should have the Python
`cryptography <https://pypi.python.org/pypi/cryptography>`__ module
installed in the environment you are working. It you have pip
installed in your system, this can be installed using:

[sudo] pip install cryptography





We recommend the use of
`virtualenv <https://pypi.python.org/pypi/virtualenv>`__ to create a
separate virtual environment for your project. It can be installed
using:

[sudo] pip install virtualenv








Usage

We are currently maintaining a single module under this project for easy
import into your project. Download this project and then import the
crypto_toolkit module:

import crypto_toolkit





It currently has the following functions to handle passwords: *
generate_key_from_password * verify_key_from_password *
generate_storage_hash_from_password *
verify_storage_hash_from_password

The names of the functions are intuitive. The above functions are
necessary since it is never advisable to store passwords. Any password
must immediately converted into a key using a key derivation function
(kdfs). Based on our explorations, we found that the common practice is
to use PBKDF2 for key generation, that is use the password to derive
a key that can be used further with various encryption techniques, and
scrypt to generate hashes of passwords that can be stored for
password verification.









          

      

      

    


    
         Copyright 2017, Adarsh Saraf.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          previous |

        	crypto_toolkit 0.1 documentation 
 
      

    


    
      
          
            
  
Code Documentation





          

      

      

    


    
         Copyright 2017, Adarsh Saraf.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	crypto_toolkit 0.1 documentation 
 
      

    


    
      
          
            

Index



 




          

      

      

    


    
         Copyright 2017, Adarsh Saraf.
      Created using Sphinx 1.3.5.
    

  _static/comment.png





_static/plus.png





_static/up-pressed.png





_static/comment-bright.png





_static/file.png





_static/minus.png





_static/ajax-loader.gif





_static/down.png





_static/up.png





_static/down-pressed.png





_static/comment-close.png





